# Metric subregularity for monotone inclusions

Metric sub-regularity is a local property of set-valued operators which turns out to be a key enabler for linear convergence in several operator-based algorithms. However, conditions are often stated for the fixed-point residual operator and become rather difficult to verify in practice. In this post we state sufficient metric sub-regularity conditions for a monotone inclusion which are easier to verify and we focus on the preconditioned proximal point method (P3M). Continue reading →